## 7 Topic: $\pi$ is irrational

The goal of this project is to fill in the gaps in a relatively simple proof of the fact that $\pi$ is irrational. Opposite to the previous projects, I will collect only one work from each group and each group member will get the same grade.

The idea of the proof is as usual: Assume that

$$
\pi=\frac{a}{b}
$$

for positive integers $a$ and $b$ and reach a contradiction.
$\diamond$ 7.1. The main tool in the proof is the function

$$
f(x)=\frac{x^{n}(a-b x)^{n}}{n!},
$$

which is a polynomial of degree $2 n$, where $n$ is a natural number that will be specified later.
In the following you will need to compute derivatives of $f$. Note that $f$ can be written as $f(x)=$ $(n!)^{-1} u(x) v(x)$, where $u(x)=x^{n}$ and $v(x)=(a-b x)^{n}$. I hope that you remember how to find the derivative of a product. Continue taking the derivatives $(u v)^{\prime},(u v)^{\prime \prime},(u v)^{\prime \prime \prime}$, observe the pattern and realize how to compute $(u v)^{(k)}$, i.e., the $k$-th derivative of a product. (Hint: Project 3 can be of some help. The formula you obtain is often called the Leibnitz formula. Note that I do not request a proof of it.)
$\diamond$ 7.2. Using the previous carefully prove
Lemma 7.1. Assuming that $\pi=\frac{a}{b}$ and for $f$ defined above the values

$$
f^{(k)}(0) \quad f^{(k)}(\pi)
$$

are integers for any integer $k \geq 0$.
Hint: The proof is somewhat tedious since you are literally asked to compute all $u^{(k)}(0), u^{(k)}(\pi)$, $v^{(k)}(0), v^{(k)}(\pi)$ (note that you will need to distinguish different cases for $k$, which ones?), and use the Leibnitz formula. Just do not skip any steps.
$\diamond$ 7.3. Define two more functions:

$$
\begin{aligned}
& g(x)=f(x)-f^{\prime \prime}(x)+f^{(4)}(x)-\ldots+(-1)^{n} f^{(2 n)}(x) \\
& h(x)=g^{\prime}(x) \sin x-g(x) \cos x
\end{aligned}
$$

Prove

## Lemma 7.2.

$$
h^{\prime}(x)=f(x) \sin x .
$$

(This lemma shows that $h(x)$ is an antiderivative of $f(x) \sin x$. The proof is a direct calculation of derivatives and canceling.)
$\diamond$ 7.4. Using Lemma 7.2 and 7.1 conclude that the integral

$$
\int_{0}^{\pi} f(x) \sin x \mathrm{~d} x
$$

must be a positive integer.
On another hand justify (Calc I notes for basic properties of the integrals can be useful) the estimate

$$
0<\int_{0}^{\pi} f(x) \sin x \mathrm{~d} x<\pi \frac{(\pi a)^{n}}{n!}
$$

Moreover, using any Calculus technique, show that

$$
\frac{(\pi a)^{n}}{n!} \rightarrow 0
$$

as $n$ grows, and therefore it is always possible to choose $n$ such that the integral above is (include what is needed here) hence reaching the contradiction.
$\diamond$ 7.5. Google the paper "A simple proof that $\pi$ is irrational" by Ivan Niven, read it (it is half a page long) and test yourself whether you understand every step in the proof.

